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LETTER TO THE EDITOR 

Adsorption of directed polymers 

A R Veal?, J M Yeomanst and G Jugs0 
t Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford 
OX1 3NP, UK 
$ Theory and Computational Science Group, AFRC-IFRN, Colney Lane, Norwich 
NR4 7UA, UK 

Received 27 October 1989 

Abstract. We calculate the phase diagram of a directed polymer with nearest-neighbour 
interactions on a semi-infinite square lattice with an attractive wall. The calculations are 
performed by numerically diagonalising the transfer matrix on strips of width N and 
extrapolating to N =CO. 

Polymer adsorption on a substrate has received considerable attention both because 
of its intrinsic merit as an interesting problem in statistical mechanics [ l ]  and because 
of its technological importance in the stabilisation of colloidal dispersions used in 
paints, pharmaceuticals and foodstuffs [2]. The adsorption of a self-avoiding walk is 
now well understood as a multicritical point with associated scaling laws [3]. The 
critical exponents can be predicted exactly in two dimensions using conformal invari- 
ance [4-61. However, there has been much less work in the case where the surface 
attraction competes with monomer-monomer interactions. The only calculation of a 
phase diagram for such a system that we are aware of is by Bouchaud and Vannimenus 
[7] who use a real-space renormalisation group approach. 

Therefore, in this letter we calculate the phase diagram of a directed self-avoiding 
walk with nearest-neighbour attractive interactions in the presence of an absorbing 
wall. This situation is of interest particularly when adsorption takes place in the 
presence of shear flow parallel to the surface. The calculations are performed by 
numerically diagonalising the transfer matrix on strips of width N and then extrapolat- 
ing to N = CO. The finite-size behaviour is very regular and gives us considerable 
confidence in the accuracy of the phase diagram. 

We consider a directed polymer on a strip of width N as shown in figure 1. The 
polymer is directed in that steps in the negative x direction are forbidden. Hence, the 
position of the polymer in column i, ni, is unique. The attraction to the substrate is 
modelled by assigning an energy K to each column in which n, = 1 or N. Nearest- 
neighbour interactions between monomers are introduced through an attractive energy 
J between bonds which occupy the same row in adjacent columns. 

The generating function of this model can be written 

%= c W L K ' T "  
walks 

5 Also at: International School for Advanced Studies (SISSA), Trieste, Italy. 
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Figure 1. A directed polymer on a strip of width N. The polymer interacts with the surface 
of the strip (double lines). Monomer-monomer interactions are represented by wavy lines. 

, L counts the total number where U is the monomer fugacity, K = e-K/kBJ,  r = e 
of monomers, I the number of monomers lying in a surface and n the number of 
nearest-neighbour interactions. 

To calculate E we follow Privman and SvrakiC [8] and write (1) in terms of a 
transfer matrix, T. The transfer matrix elements, Tap,  are labelled by the values of 
LY = (n,, n,+,) and P = (n,,, , n,,,) and are defined by 

-J/k,T 

T,, = ' U P  K '=s r"-@ (2) 

La, = 1 +(In, - ni+,l+ In,+,- ~ + 2 1 ) / 2  (3) 

l a p  = & , + , . I  + & , + I , ~  (4) 

nap = "4 - n,+,l, In,+, - n1+21). ( 5 )  

ELx = uTTLw ( 6 )  

where 

The sum of the Boltzmann weights of all walks with L, steps in the x direction is 

where U and U are vectors depending on the initial and final positions of the polymer. 
Summing over L, gives the generating function for all walks on the lattice, 

E = C zLt = U 'T( 1 -T)-'u. (7)  
L, 

It can be seen immediately from (7) that the singularity in 3' corresponding to the 
critical fugacity, U * ,  occurs when the largest eigenvalue of the transfer matrix, A max, 

is unity. 
We have obtained finite-size approximations to the critical fugacity, U % ,  by calculat- 

ing the largest eigenvalue of the transfer matrix for a strip of width N, AYx, and 
putting it equal to one. The finite-size results behave in a very regular way and give 
rather firm evidence for the phase diagram shown in figure 2. We shall now describe 
in more detail how this phase diagram was obtained. 

We begin with the adsorption transition. The finite-size critical fugacity, w % ( K ) ,  
is shown for different values of T in figure 3. 

Consider first the case of no monomer-monomer interactions, 7 = 1. For the 
semi-infinite system this limit has been solved exactly by Privman er a1 [8,9] who 
found an adsorption transition at w* = f i- 1, K* = 1 + 1 / f i .  Their analysis can be 
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Figure 2. Phase diagram of the directed polymer showing the extended, collapsed and 
bound phases. Successive approximations to the adsorption phase boundary, K & (  T ) ,  were 
obtained from (13,  14) for N = 3 ,  5 , .  . . , 11. 

extended to finite N, using methods similar to those employed in related models of 
interfacial wetting [8, 101. The results provide a useful check on the numerical calcula- 
tions and indicate their asymptotic convergence with increasing N. In the extended 
phase, K < K * ,  

whereas in the bound phase we find the expected exponential dependence of the 
leading correction term on N. Near the adsorption transition, ( U * ,  K * ) ,  the phase 
boundary can be written in terms of the scaled variables 

U =  Nlw*-wl"*  (9) 

U =  NIK*-KI (10) 

U = (1 + d ) u  tanh u (11)  

u=(l+JZ)u t anu  K s K * ,  U<< 1. (12)  

as 

K 3 K * ,  U<< 1 

Hence, for T = 1, the critical curves cross at ( w * ,  K * )  for all values of N. 
For 7 3 1, a sequence of finite-size approximations to the position of the adsorption 

transition, ( U % ,  K % ) ,  were obtained from the crossing points of curves for strips of 
width N and N + 2 :  

A V " ( W % ,  K L )  = 1 (13 )  

A"N","2(WL, K%)=1. (14) 
The resulting variation of K %  with T for N = 3 , 5 ,  . . . , 1 1  is shown on the phase diagram 
in figure 2. 
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Figure 3. Dependence of the critical fugacity on surface binding potential, w ~ ( K )  for 
N = 5 , 9 , .  . . , 2 1  for values of T between 1 and 6.  The intersection point of curves is K:. 

The curves in figure 3 retain the same general appearance as T increases. In the 
bound phase, the convergence to w* is exponentially fast and therefore the results 
show little dependence on N, except in the vicinity of the adsorption transition. Above 
the adsorption transition, K < K * ,  w: converges approximately as 

(15) - U *  - ( N  - 1 )  -aeff 

where the effective exponent aetl varies from 2 at T = 1 to 1 for large r. The crossover 
is associated with the transition from the extended phase to the collapsed phase. 

It is also instructive to look at the fraction of adsorbed monomers, defined as the 
ratio of the average number of bonds at the surface, (I), to the average number of 
bonds, (L), where the averages are evaluated at the critical fugacity. This quantity is 
an order parameter for the adsorption transition. Finite-size data as a function of K 

for different values of T are shown in figure 4. They show clear evidence for a transition 
at K * .  Note, however, that the character of the transition appears to change with 
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Figure 4. The fraction of adsorbed monomers at the critical fugacity, w : ,  plotted as a 
function of binding potential, K ,  for values of T between 1 and 6. 

increasing T. It is tempting to identify the adsorption transition of the extended polymer 
as second order and that of the collapsed polymer as first order. 

To see if this is a reasonable premise and to complete the phase diagram we now 
consider the collapse transition itself. Figure 5 ( a )  shows extrapolated values of the 
product TU* for K = 1 (no surface interaction) as a function of T. The extrapolated 
values were estimated assuming an effective power law convergence (15) and determin- 
ing the effective exponent from a triplet of consecutive finite-size estimates [ 113. Figure 
5 (  b)  shows finite-size data for the average number of interactions per monomer at the 
critical fugacity, ( n ) / ( L ) ,  as a function of T for K = 1. Both graphs indicate a phase 
transition at ~ * = 3 . 4 .  One would expect this value to be independent of K and very 
similar data to those presented in figure 5 have been obtained for K = 1.5 and 2. 

Returning to figure 2, the curves K $ ( T )  cross at a point 

(T*, K * )  = (3.382 976,2.191 488) (16) 
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Figure 5. The variation of ( a )  extrapolated values of the product TU$,  and ( b )  the average 
number of interactions per monomer at the critical fugacity, with T for K = 1 .  The transition 
is expected to occur at T* = 3.383 (shown by an arrow in the figures): this correspond to 
the value of T at the multicritical point. 

(for which w* = 0.295 5977) independent of N and it is tempting to identify this as 
the position of the multicritical point. If this is the correct identification, the indepen- 
dence of the size of the system suggests that this is an exact result to numerical precision. 
Because the position of the collapse transition is expected to be independent of K 

above the adsorption transition, in a semi-infinite system, we conclude that T* = 
3.382 976 for all K < K * ,  in agreement with the results shown in figure 5 .  For d > 2, a 
bound-extended/bound-collapsed transition line should also exist for K > K * .  

To conclude, we have calculated the phase diagram of a directed polymer with an 
adsorbing wall and monomer-monomer interactions using finite-size scaling. Accurate 
results are possible even with small strip widths. The transfer matrix has dimension 
N 2 ,  with N 3  non-zero elements. It is not difficult to go to higher values of N and we 
have obtained results for N up to 51 which confirm the picture presented here. The 
numerical results provide strong evidence that the adsorption transition is second order 
when the unbound polymer is extended but first order when it is collapsed. We identify 
the multicritical point where the collapse and adsorption transitions coincide as the 
point where the curves K$, (T )  cross. This point appears numerically to be independent 
of N and hence, if the identification is correct, the result is exact. Our phase diagram 
agrees qualitatively with that of Bouchaud and Vannimenus [7] who performed a 
real-space renormalisation group calculation for the three-dimensional Sierpinski 
gasket. 

A problem of great interest is the collapse-adsorption multicritical behaviour of 
isotropic self-avoiding walks in two dimensions. This is more difficult because of the 
larger sizes of the transfer matrices [ 121 and because the allowed configurations of the 
collapsed polymer that can fit on the strip depend strongly on N. However, the results 
presented here have proved a useful guide to the most efficient method of analysis for 
that problem. Results for the isotropic model and more details of the work described 
in this letter will be presented elsewhere. 
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